理学 >>> 数学 信息科学与系统科学 物理学 化学 天文学 地球科学总论 大气科学 地球物理学 地理学 地质学 水文学 海洋科学 生物学 科学技术史
搜索结果: 1-15 共查到理学 the Navier - Stokes相关记录105条 . 查询时间(0.049 秒)
We consider the existence, uniqueness and nonlinear stability of the travelling wave solution of the Navier-Stokes-Poisson system with density-dependent viscosity for ions. Firstly, we derive a system...
Our work is to prove the global existence and uniqueness of solutions to the inhomogeneous incompressible Navier-Stokes system in the case where the initial density $\rho_0$ is discontinuous and the i...
This paper is concerned with the asymptotic stability of a composite wave of two viscous shocks under spatially periodic perturbations for the 1-d full compressible Navier--Stokes equations. It is pro...
In this talk, the combined quasi-neutral and zero-viscosity limits of the two-fluid Navier-Stokes-Poisson systems (one for ion and another for electron) with boundary are rigorously proved by investig...
The Cauchy problem for the barotropic compressible Navier--Stokes equations on the whole two-dimensional space with vacuum as far field density is considered. When the shear viscosity is a positive co...
The Cauchy problem for the barotropic compressible Navier--Stokes equations on the whole two-dimensional space with vacuum as far field density is considered. When the shear viscosity is a positive co...
We deal with the 3D NavierStokes equation in a smooth simply connected bounded domain, with controls on a non-empty open part of the boundary and a Navier slip-with-friction boundary condition on the...
可压缩Navier-Stokes方程描述了可压粘性流体的运动规律,是流体力学中的基本方程。粘性激波是可压缩Euler方程的激波受粘性影响形成的一个光滑行波解。激波的稳定性在数学理论和实际问题中都是重要的问题,以往的研究都是基于空间可积的局部扰动。如果扰动带有无穷多的振荡如周期扰动,则Navier-Stokes方程的粘性激波的稳定性是否会受到此类扰动的影响是公开问题。另一方面当粘性消失时,周期解会出...
对经典不可压缩Navier-Stokes 方程:关于该问题的整体正则性是Clay研究所公布的七大千禧年问题之一。我们[7]证明了只要初始速度的一个方向导数在临界函数空间中充分小时,该问题存在唯一整体解,根据此条件, 我们构造了多类使得该方程存在整体解的大初值;更进一步我们[3]将此结果推广到了三维各向异性的Navier-Stokes方程;在[8]中证明了对于任意初值, 只要该方程的一个粘...
高维等熵/非等熵可压缩Navier-Stokes方程组是否具有允许真空初值的整体光滑解和弱解是一个长久的公开问题。我们在该系列问题的研究上取得了重大进展。
Boltzmann方程描述了“稀薄气体”的运动规律,是统计力学中的基本方程。Boltzmann方程解的整体适定性问题是偏微分方程中的核心问题。对于一般初值,美国数学家R.J. Diperna与法国数学家P.L. Lions (1994年Fields获得者) (Ann. of Math, 1989)通过弱紧性方法首次得到了Boltzmann方程的大初值重整化解的整体存在性。但是该重整化解的唯一性和正...
We consider barotropic compressible Navier-Stokes equations with density dependent viscosity coefficients that vanish on vacuum. We prove the stability of weak solutions in periodic domain Ω = T...
We establish the existence of a weak solutions for a coupled system of kinetic and fluid equations. More precisely, we consider a Vlasov-FokkerPlanck equation coupled to compressible Navier-Stokes equ...
This article is devoted to the asymptotic analysis of a system of coupled kinetic and fluid equations, namely the Vlasov-Fokker-Planck equation and a compressible Navier-Stokes equation. Such a system...
We consider Navier-Stokes equations for compressible viscous fluids in one dimension. It is a well known fact that if the initial datum are smooth and the initial density is bounded by below by a posi...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...